
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001 901

Optimization of H.263 Video Encoding Using
a Single Processor Computer: Performance

Tradeoffs and Benchmarking
Shahriar M. Akramullah, Member, IEEE, Ishfaq Ahmad, and Ming L. Liou, Fellow, IEEE

Abstract—In this paper, we present the optimization and perfor-
mance evaluation of a software-based H.263 video encoder. The ob-
jective is to maximize the encoding rate without losing the picture
quality on an ordinary single-processor computer such as a PC or
a workstation. This requires optimizations at all design and imple-
mentation phases, including algorithmic enhancements, efficient
implementations of all encoding modules, and taking advantage of
certain architectural features of the machine. We design efficient
algorithms for DCT and fast motion estimation, and exploit var-
ious techniques to speed up the processing, including a number of
compiler optimizations and removal of redundant operations. For
exploiting the architectural features of the machine, we make use of
low-level machine primitives such as Sun UltraSPARC’svisual in-
struction setand Intel’s multimedia extension, which accelerate the
computation in a Single Instruction Stream Multiple Data Stream
fashion. Extensive benchmarking is carried out on three platforms:
a 167-MHz Sun UltraSPARC-1 workstation, a 233-MHz Pentium
II PC, and a 600-MHz Pentium III PC. We examine the effect of
each type of optimization for every coding mode of H.263, high-
lighting the tradeoffs between quality and complexity. The results
also allow us to make an interesting comparison between the work-
station and the PCs. The encoder yields 45.68 frames per second
(frames/s) on the Pentium III PC, 18.13 frames/s on the Pentium
II PC, and 12.17 frames/s on the workstation for QCIF resolution
video with high perceptual quality at reasonable bit rates, which
are sufficient for most of the general switched telephone networks
based video telephony applications. The paper concludes by sug-
gesting optimum coding options.

Index Terms—H.263, low-level parallelism, MPEG, real-time
video coding, very low bit rate.

I. INTRODUCTION

H .263 is an international standard optimized for com-
pressing video at low bit rates. It supports efficient

transmission of digital video over narrow-band telecom-
munication channels. Several research results reporting
implementation [1], [20] and improvement [4], [12], [15],
[16], [21] of the H.263 video codec have been reported. The

Manuscript received October 20, 1998; revised April 27, 2001. This work
was supported by the Hong Kong Telecom Institute of Information Technology
and the Hong Kong RGC under Grant HKUST6228/99E. This paper was rec-
ommended by Associate Editor S. Panchanathan.

S. M. Akramullah and M. L. Liou are with the Department of Electrical
and Electronic Engineering, Hong Kong University of Science and Tech-
nology, Clear Water Bay, Kowloon, Hong Kong (e-mail: eetipu@ee.ust.hk;
eeliou@ee.ust.hk).

I. Ahmad is with the Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (e-mail:
iahmad@cs.ust.hk).

Publisher Item Identifier S 1051-8215(01)06745-3.

complexity of the H.263 video coding makes it seemingly
impossible to accomplish real-time video coding without using
special-purpose hardware, such as function-specific multimedia
processors, parallel digital signal processing (DSP) system,
programmable single-component mixed-media coprocessors
etc., [3]. However, a dedicated hardware implementation is
not flexible to incorporate new algorithms and can become
obsolete. Real-time performance using software, on the other
hand, has only been achieved on a multiprocessor system [1].
In this work, our aim is to build a software-only real-time
H.263 encoder on a general-purpose single-processor ordinary
computer such as a PC or a workstation.

Optimization of the codec means optimizations at all of the
implementation phases, including algorithmic enhancements,
compiler and code optimization, and taking advantage of cer-
tain architectural features of the machine. We optimize efficient
algorithms for various functional modules of H.263 video en-
coder such as motion estimation (ME), discrete cosine trans-
form (DCT), and inverse DCT, and elevate their performance
through efficient implementation. We use compiler optimiza-
tions in order to exploit sophisticated scheduling algorithms
for redistributing the tasks for fast processing. Performance of
the implementation is enhanced by using simplified model of
floating-point arithmetic, loop parallelization, common subex-
pression elimination, copy propagation, automatic register al-
location, tracing of the effects of pointer assignments, etc. Our
code optimization includes loop unrolling, which decreases the
number of iterations, and data type optimization (DTO), which
chooses suitable data types of variables in the program’s critical
path so as to yield the most efficient performance of basic arith-
metic operations. In addition, we remove all possible redundant
operations.

In order to exploit the architectural features of the machine,
we exploit low-level machine primitives that provide extensions
to the core instruction sets with a view to support multimedia
data. The use of extended instruction sets in existing micro-
processors explore potential low-level parallelism in order to
enhance performance of applications with low-precision data.
Video coding deals with the data streams which are regular and
have independent control flow. Thus, data-level parallelism can
be explored by introducing additional logic to partition a higher
precision data path to handle multiple pieces of packed lower
precision data processed with a single instruction. Typical ex-
amples of such multimedia-capable general-purpose processors
include Intel’s Multi Media eXtension (MMX) [17] and Sun Mi-
crosystems’ Visual Instruction Set (VIS) [22]. Using these ex-

1051–8215/01$10.00 © 2001 IEEE

902 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

Fig. 1. H.263 computational modules.

tended multimedia instruction sets, we accelerate the computa-
tion in asingle instruction stream multiple data stream(SIMD)
fashion, increase the utilization of available registers in the pro-
cessor, and remove register contentions between data and con-
trol variables.

Extensive benchmarking is carried out on a 167-MHz Sun
UltraSPARC-1 workstation, a 233-MHz Pentium II PC, and a
600-MHz Pentium III PC to study the performance of the en-
coder. Based on the benchmarking results, suggestions are made
to decide the optimum coding options. We carry out a thor-
ough benchmarking which considers various aspects of our im-
plementation. The study determines the effect of each type of
optimization for each coding mode of H.263. Our results indi-
cate the tradeoffs between quality and complexity, as well as
make an interesting comparison between the workstation and
the PCs. The encoder achieves frame-encoding speeds up to
45.68 frames/s on the PCs and 12.17 frames/s on the worksta-
tion for Quarter Common Intermediate Format (QCIF) resolu-
tion of video with high perceptual quality at reasonable bit rates,
which is sufficient for most of the general switched telephone
networks (GSTN)-based video-telephony applications. As the
speed of PCs will further increase, video coding will become an
integral part of its resources and a useful commodity.

The rest of the paper is organized as follows. Section II gives
an overview of the H.263 video coding standard, Section III de-
scribes the extended instruction sets for multimedia enhance-
ments, and Section IV gives a discussion of various optimiza-
tions. Experimental results are presented in Section V.

II. OVERVIEW OF THEH.263 VIDEO-CODING STANDARD

H.263 [10], defined by ITU-T, is aimed at low-bit-rate video
coding, with the objective to provide significantly better picture
quality than its predecessor H.261 [9]. Conceptually, H.263 is
network independent and can be used for a wide range of ap-
plications, but its target applications are visual telephony and
multimedia on low bit-rate networks like the GSTN, integrated
services digital network (ISDN), and wireless networks. Some

of the important considerations of H.263 are small overhead,
low complexity resulting in low cost, interoperability with other
existing video-communication standards (e.g., H.261, H.320),
robustness to channel errors, quality-of-service parameters, etc.
Based on these considerations, an efficient coding scheme has
been developed which gives flexibility to manufacturers to make
a tradeoff between picture quality and complexity.

The generalized H.263 source encoder is shown in Fig. 1.
H.263 uses a hybrid of interpicture prediction to utilize tem-
poral redundancy and transform coding of the residual predic-
tion error signal to reduce spatial redundancy. Although H.263
is closely related to the H.261, it provides the same subjective
image quality at less than half the bit rate [5].

The transform coding is done by discrete cosine transform
(DCT). The transformed signal is then quantized with a scalar
quantizer, and the resulting symbols are variable-length coded
and transmitted. At the decoder, the received signal is inverse
quantized, and subsequently, inverse transformed to reconstruct
the prediction error signal, which is added to the prediction, thus
creating the reconstructed picture. The reconstructed picture is
stored in a frame buffer and can serve as the reference picture
for the prediction of the next picture. The encoder consists of
an embedded decoder, where the same decoding operation is
performed so that both the encoder and the decoder have the
same reconstructed picture.

A picture is divided into macroblocks, since such division
results in more efficient coding. Each macroblock consists of
four luminance blocks and two spatially aligned color differ-
ence blocks. Each of these blocks are of size 88 pixels. One
or more macroblock rows are combined into a group of blocks
(GOB) to enable quick resynchronization after transmission er-
rors. The GOB structure is simpler than that adopted in H.261.
The optional GOB headers may or may not be used, depending
on the tradeoff between error resilience and coding efficiency
[19].

For improved interpicture prediction, the H.263 decoder has
the block-motion compensation capability, while its use in the

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 903

encoder is optional. Using block-motion compensation, inter-
picture prediction can be improved when the prediction blocks
can be taken from different positions in the previous picture.
One motion vector is transmitted per macroblock so that the
simple translational motion can be compensated for. Half-pixel
precision is used for motion compensation, as opposed to H.261,
where full-pixel precision and a loop filter are used. Therefore,
the visual quality is better compared to H.261 [5]. The mo-
tion-vector symbols are transmitted to the decoder after vari-
able-length coding. The bit rate of the coded video may be con-
trolled by preprocessing or by varying the following encoder
parameters: quantizer scale size, mode selections, and picture
rate.

Further to the core coding algorithm described above, H.263
includes four negotiable coding options: 1) unrestricted motion
vectors (UMVs); 2) advanced prediction; 3) PB-frames; and 4)
syntax-based arithmetic coding (SAC). The first three options
are used to improve interpicture prediction. The fourth is re-
lated to lossless coding of the symbols to be transmitted, which
may be used instead of Huffman coding. These coding options
increase the complexity of the encoder, but improve the picture
quality, thereby allowing a tradeoff between picture quality and
complexity [19].

The source coder can operate on one of the five standardized
picture formats: 1) sub-QCIF (12896); 2) QCIF (176 144);
3) CIF (352 288); 4) 4CIF (704 576); and 5) 16CIF
(1408 1152), covering a large range of spatial resolutions.
Support for both sub-QCIF and QCIF formats in the decoder is
mandatory, while either one of these formats must be supported
by the encoder. This requirement is a compromise between
high resolution and low cost.

UMV Mode: In this mode, motion vectors are allowed to
point outside the coded picture area. This allows for a better
prediction when a small part of the predicted macroblock is lo-
cated outside the picture area and, therefore, is not available.
In case of the prediction of these unavailable pixels, the edge
pixels are used instead. With this mode, a gain in quality is
achieved, especially for the smaller picture formats if there is
motion at near the picture boundaries. Note that, for sub-QCIF
picture format, about 50% of all the macroblocks are located at
or near the boundary.

Advanced Prediction Mode:In this optional mode, the over-
lapped block motion compensation (OBMC) is used for the lu-
minance component which reduces the blocking artifacts and
thereby improves the subjective video quality. For some of the
macroblocks, four 8 8 vectors are used instead of one 1616
vector, providing better prediction but at the expense of more
bits.

PB-Frames Mode:The principal purpose of the PB-frames
mode is to increase the frame rate without significantly in-
creasing the bit rate. A PB-frame consists of two pictures coded
as one unit. The P-picture is predicted from the last decoded
P-picture and the B-picture is predicted both from the last and
current P-pictures. Although the names P-picture and B-picture
are adopted from MPEG [8], B-pictures in H.263 serve an
entirely different purpose. The quality for the B-frames is
intentionally kept lower, so as to minimize the overhead of
bidirectional prediction, which is important in low bit-rate

applications. B-pictures use only 15%–20% of the allocated
bit rate, but result in better subjective impression of smooth
motion.

SAC Mode: Since H.263 is optimized for very low bit rates, it
uses the optional SAC mode, which replaces the variable length
coding/decoding (VLC/VLD) using Huffman tables by arith-
metic coding/decoding operations in order to reduce the number
of bits to be transmitted. While in the normal VLC/VLD process
(using Huffman coding), only a fixed integral number of bits
must be used for each coded symbol, arithmetic coding removes
this restriction, resulting in a reduced bit rate, while at the same
time not losing the advantages offered by normal VLC/VLD.

III. EXTENDED INSTRUCTION SETS FORMULTIMEDIA

ENHANCEMENT

In this section, we discuss two low-level machine primitives,
namely the VIS for SUN UltraSPARC workstations and the
MMX for Intel Pentium-based PCs. These are, in effect, ex-
tensions to the core instruction sets, specifically designed to
embody special instructions suitable for multimedia applica-
tions. These instruction sets support integer data processing in
single instruction stream multiple data stream (SIMD) fashion
by utilizing a packed fixed-point integer, where multiple integer
words are grouped into a single 64-bit quantity. These 64-bit
quantities can be moved into the 64-bit (integer or floating point)
registers and processed with a single instruction, providing data
parallelism and thereby enhancing the performance.

A. The VIS

The VIS [22] in the Sun UltraSPARC processor is a RISC-like
extension to the SPARC V9 instruction set, which provides core
instructions that greatly enhance the graphics and image pro-
cessing capabilities of SPARC processors [11]. We exploit the
data alignment and packing capabilities of VIS, along with its
various representations of data (for instance, one 64-bit data
may represent eight 8-bit partitioned, four 16-bit partitioned,
or two 32-bit partitioned data). Thereby, we use a 64-bit reg-
ister to perform a set of eight 8-bit, four 16-bit, or two 32-bit
integer arithmetic in parallel, providing 8-fold, 4-fold or 2-fold
speedup, respectively.

In image- and video-processing applications, many computa-
tions can be accelerated in a SIMD fashion. The addition of VIS
is equivalent to adding a SIMD fixed-point processor [14]. We
process four pixels (each represented by 16 bits) using only one
VIS instruction, performing either multiplication, addition, sub-
traction, or logical evaluation. A few special VIS instructions, in
addition to the regular instructions, enable the video coding ap-
plication to speed up by a factor of four or higher [25]. We per-
form most operations using VIS in floating-point register file,
so that substantial register space is available and there are no
register contentions between data and control variables. In our
experiments, we have used VIS for ME, MCP, DCT, and IDCT.

B. The MMX Instruction Set

Like VIS, Intel’s MMX is an extended multimedia instruc-
tion set. MMX implements a new high-performance architec-
tural technique and includes new instructions and data types to

904 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

Fig. 2. Pixel-vector subsampling with an alternating schedule of patterns.

achieve increased level of performance on the host CPU. Essen-
tially, MMX exploits the parallelism inherent in many of the al-
gorithms in video, graphics, or multimedia applications by pro-
cessing several pieces of data with each instruction [17]. MMX
introduces 57 new instructions and 8 new virtual 64-bits reg-
isters in order to accomplish SIMD features. With data packed
into one virtualgiant register, more than one piece of data can
be processed by a single instruction. For the DCT and IDCT
implementation, we have performed 16 multiplications and 14
additions by using only five MMX instructions, thus reducing
35.5% of the clock cycles.

The gain in speedup is often circumvented by the overhead
of data re-arrangement, data copying, data-type conversion, etc.
(nonarithmetic operations) to suit the MMX instructions. Thus,
the overall gain in performance may be restricted if the MMX
instructions are not judiciously applied.

IV. OPTIMIZATIONS

The encoder is ehhanced with a variety of optimization tech-
niques.

A. Algorithmic Optimization (AO)

We start with a fast search algorithm [6] that provides high
speedup compared to full search block matching (FSBM). The
algorithm uses reduced number of bits required for the motion
vectors, yet maintaining the quality to an acceptable level. The
algorithm partitions the search range into nested search zones,
where the first zone is the innermost area of size 33 or 5 5
pixels. If the minimum MAD (mean absolute difference of a
macroblock) can be found in the center, or if the matching error
is less than a predefined threshold, the search procedure stops.
Otherwise, the procedure continues to next consecutive zones.
We use a threshold of 8 (threshold zero means full search) for
zone 1, while our search range is . However, we use a
variation of [6] and, instead of making the threshold zero for
zone 2, we rather use an even larger threshold of 12 (in the
Ultra-1 implementation) or 16 (in the PC implementation) in
order to maintain the obtained speedup. This way, we do not
lose the advantages gained by the use of zone-based algorithm.

In order to fully exploit the advantages offered by the ex-
tended multimedia instruction sets, we make a modification in
the block-matching process to further speed up the computa-
tion. We use a pixel-vector decimation technique similar to [13]
so that only one 8-pixel vector is used for each row of pixels in
the macroblock. Our approach is different from [13] in that, in-
stead of subsampling pixels, we subsample vectors of pixels in
both horizontal and vertical dimensions. The advantage of using
8-pixel vectors lies in their availability for VIS or MMX,1 as the
eight pixels are stored in a byte-aligned fashion in contiguous
memory locations. This approach is illustrated in Fig. 2. If only
the pixel vectors of pattern are used for block matching, then
the computation is reduced by a factor of four. However, since
75% of the pixel vectors do not enter into the matching computa-
tion, the use of this subsampling pattern alone can negatively af-
fect the accuracy of motion vectors. To reduce this drawback, we
use all four subsampling patterns, but only one at each search lo-
cation and in a specific alternating (cyclic) manner. Therefore, if
pattern is used at the search location (), then it is also used
at locations () for , integers within the search
area; pattern is used at locations (), pattern
at () and pattern at (). For
each of the subsampling patterns, we obtain a motion vector that
minimizes thesum of absolute differences (SAD)over the loca-
tions where the pattern is used. The minimum SAD, obtained
from all four patterns, corresponds to the selected motion vector
for the macroblock. By doing pixel-vector decimation, about 5%
reduction in overall program running time is obtained.

The overall accuracy of DCT and IDCT is not affected by
rounding off and truncations, which are intrinsic to the quanti-
zation process in video-coding applications. By exploiting this
fact, we have designed a fast 88 DCT and IDCT algorithm
(based on [18]) using VIS and MMX. The DCT/IDCT routines
take an input block of 16-bit integers and deliver an output block
of 16-bit integers. Since the input to the DCT routine is usu-
ally the difference between the current block and the reference
block, the difference pixel can occupy 9 bits, and therefore, is
represented as a 16-bit datum. We store four such 16-bit data

1In the case of MMX-based implementation, we compute the SAD based on
4-pixel vectors for block matching.

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 905

Fig. 3. Signal flow graph for 8-point DCT.

Fig. 4. Data rearrangement in 8-point DCT to facilitate VIS operations.

into a 64-bit register. We group these data elements such that
DCT computation can be viewed as an SIMD parallel process.
For instance, the transformation in the first stage of Fig. 3 can
be written as

(1)

(2)

In order to perform the addition and subtraction in (1) and
(2), we rearrange the input vector (residing in two regis-
ters and) into registers , and , , as shown
in Fig. 4. This rearrangement is necessary to maintain the cor-
respondence of data elements which are being operated on. By
using 16-bit partitioned addition/subtraction of a 64-bit register
on corresponding 16-bit data elements in registersand ,
we obtain (, , ,) and (, , ,), respectively,
which are stored in 64-bit registers and , respectively.

Similarly, the transformation of the upper part of second stage
can be written as

(3)

(4)

The values of (,) and (,) can be obtained by using
16-bit partitioned addition/subtraction on corresponding data el-
ements of the upper and lower halves of.

We have developed an efficient 32-bit32-bit multiplication
strategy, where a pair of 16-bit16-bit multiplications are done
in parallel. For instance, the upper part of the third stage of Fig. 3
requires three such multiplications, namely , ,

, and . The upper and
lower halves of the results (64 bits) of these multiplications can
be added or subtracted using 32-bit partitioned addition/subtrac-
tion of 64-bit register on corresponding data elements in order to
produce . Similarly, can be ob-
tained according to the transformation depicted in the lower part
of stages 2–4 in Fig. 3.

B. Compiler Optimization

Most compilers come with optimizers that take advantage of
sophisticated scheduling algorithms in order to perform soft-
ware pipelining, for most efficient processing. Although we try
to be as discreet as possible, some of the program optimization
(mentioned in next section) may well be implicitly performed
by the compiler optimizer.

906 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

For Ultra-1 based experiments, we have used the Sun Solaris
C compiler (SC4.0) with the following flags setting:

(this flag defines the set of instruction the compiler
should use), (it defines the cache properties
for use by the optimizer), (it enables all dependence
based transformations), (it refers to the specification of a
common set of performance options), and most importantly,
(it specifies that the compiler should generate optimized code at
level 4). In addition, is used for preparing object code to
collect data for profiling usinggprof.

For PC-based experiments, we have used the Microsoft Vi-
sual C compiler, with the following settings: (it dis-
ables compiler optimization, we use it for the no optimization
case), (it combines optimizing options to produce the fastest
possible program), (it enables the compiler to reduce some
C/C constructs to equivalent machine code), (it helps
store variables in registers and perform loop optimization),
(it ensures that after each function call, pointer variables must be
reloaded from memory), (it provides local and global opti-
mizations, automatic register allocation and loop optimization),

(it replaces some function calls with intrinsic functions, to
avoid overhead of function calls), (it improves consistency
of floating points by disabling optimizations that could change
floating-point precision), and (it omits frame pointers on the
call stack and frees up one more register for storing frequently
used variables and subexpressions). While using MMX instruc-
tions, we add the flag in order to exploit further compiler
optimization suitable for MMX instruction set. For a linker, op-
timization option has been used.

C. Code Optimization

The following code-optimization techniques provide signif-
icant performance improvement [2], especially when the com-
piler optimizer fails to efficiently use the system resources.

Loop Unrolling: The H.263 encoder accesses data structures
organized in matrices using loops. Some encoding functions re-
quire nested loops with several levels. Parallelism can be ex-
ploited by using pipelined access to such data structures by
unrolling loops. Loop unrolling (LU) is the transformation of
a loop so as to increase the loop body size and to decrease
the number of iterations. This process may minimize both the
number of load/store instructions by utilizing the CPU registers
more efficiently, as well as data hazards arising from inefficient
scheduling of instructions by the compiler optimizer. There may
be two types of LU: Internal LU (ILU) and External LU (ELU).
ILU consists of collapsing some iterations of the most internal
loop into a larger and more complex statement requiring higher
number of machine instructions, which can be more efficiently
scheduled by the compiler optimizer. ELU consists of moving
iterations from outer loops to inner loops, by using more regis-
ters in order to minimize the number of memory access inside
the loop.

DTO: DTO is the choice of data types for the variables in
the program critical path, which maximizes the performance
of the different functional units, since the data types directly
derived from the task definition may not yield the most efficient
performance. We have used 16-bit integer values as the input
and output of DCT and IDCT. In order to cope with the required

floating-point operations in these functions, we have scaled
the floating-point constants and allocated the precomputed
constants to proper registers, instead of using the mixed-mode
operations of integers and floating points.

Reduction of Redundant Operations:Divisions and multi-
plications are usually considered to be the most cycle-expensive
operations. However, in most RISC processors, the integer (32
bit) multiply takes more cycles compared to the double (64
bit) multiply in terms of both instruction execution latency
and instruction throughput [2]. In addition, floating-point
divisions are less cycle-expensive compared to mixed-integer
and floating-point divisions. Therefore, it is important to
minimize the number of such arithmetic operations, especially
inside a loop. Possible techniques include LU and DTO, while
in some cases introduction of temporary variables (stored in
registers) can provide noticeable performance improvement.
We have used such techniques for the quantization module of
our implementation.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results and com-
parisons of our implementation on two platforms, namely the
PCs and the workstation and compare the corresponding per-
formances.

A. Test Video Streams

We have used nine video streams of QCIF resolution:Claire,
Grandma, Miss America, Salesman, Mother and Daughter,
Trevor, Car Phone, Suzie, andForeman. These video sequences
represent various type of motion, both in terms of motion in
scene content and camera motion. The variety of motion makes
the complexity of the ME process to be different for each video
sequence, while the time to calculate the motion vectors are
also of wide variation range. Being the most time-consuming
encoder module, the performance of ME affects the total
encoder running time. We may divide the above nine video
sequences into two major categories, depending on the diffi-
culty (and therefore time taken) to compute the motion vectors:
sequences withslow motion (SM) and sequences withfast
motion (FM). The sequencesClaire, Grandma, Miss America,
andSalesmanmay fall into the SM category whileMother and
Daughter, Trevor, Car Phone, Suzie, andForemanfall into the
FM category.

B. Analysis of Computational Requirements of Modules

In this section we present an analysis of the execution profile
of our H.263 encoder using the GNUgprofprofiler. Our imple-
mentation of optimized software-based H.263 encoder is based
on the Telenor’s H.263 video encoder [23]. Since the coding of
I-frame is performed only once (for the first frame) and does not
require expensive operations like motion estimation, we restrict
our analysis to the coding of one video frame as a P-frame or
two video frames as PB-frames. This analysis shows that 97.3%
of the program running time is spent on the principal encoding
function. The computation requirements of various functional
modules within this principal encoding function are analyzed
below in details. Since insignificant amount of time is spent on

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 907

TABLE I
TIME REQUIREMENTS FORMOST COMPUTATION-INTENSIVE FUNCTIONAL MODULES, AS A PERCENTAGE OF THEPRINCIPAL ENCODING FUNCTION

Fig. 5. Effect of optimizations.

performing input (about 2%) and video quality measurement in
terms of PSNR (0.6%)—these functions are not probed any fur-
ther.

Table I shows the breakdown of the execution time of the
principal encoding function into various constituent modules.
Together, they require 92%–98% of the execution time of the
principal encoding function. It may be observed that, for the
no optimization case,motion estimationis the most time con-
suming module, followed bymacroblock encoding(which in-
volves DCT and quantization) and motion-compensated predic-
tion. Unlike [20], which reports a high percentage ofmacroblock
decodingtime, our approach adopts finding IDCT for only the
nonzero elements, thereby reducing themacroblock decoding
time considerably.

With the application of all the optimizations discussed in Sec-
tion IV, the execution profile of our program changes notice-
ably. With optimizations, the computational requirement ofmo-
tion estimationis reduced to almost one third (in terms of per-
centage points). Therefore, percentage execution time of other
functional modules increases. Fig. 5 illustrates this effect.

C. Performance of the H.263 Encoder

The reported results were obtained using the first 100 frames
of each video sequence. The encoding rates are given in frames
per second. The reference frame rate was kept at 30 frames/s
while the input original sequence frame rate was assumed to be
30 frames/s. As an encoding output parameter, we used both

908 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

Fig. 6. Luminance PSNR with no optional mode.

Fig. 7. Luminance PSNR withUMV mode.

variable bit rate [with encoding frame rate2 at 30 frames/s, QP at
10, and constant bit rate (with variable QP and encoding frame
rate, but bit rate fixed at 28.8 kbits/s). To measure the actual pro-
gram running time, we used available library functions (
and), which are accurate up to microseconds. The timing
results were averaged over 100 runs. In addition to performing
the experiments on a 167-MHz Sun Ultra-1, we performed the
same experiments with two PCs: a 233-MHz Pentium II (PC
PII) and a 600-MHz Pentium III (PC PIII).

Figs. 6–11 depict the luminance PSNR under different op-
tional modes with variable bit rates. From these figures, it is
evident that PSNR does not change noticeably due to the incor-
poration of various optional modes. Subjective quality, as ob-
served, also remains the same. Therefore, with the same quality,
our choice of encoder is concentrated on the encoder speed.

Fig. 12 shows the luminance PSNR with no optional mode at
a constant bit rate of 28.8 kbits/s. The experiment was still per-
formed with 100 frames, but the encoding frame rate was vari-
able, in order to meet the constraint of fixed bit rate. Therefore,
25–29 frames of the sequences were coded, depending on the

2Endcoding frame raterefers to the ratio of the allocated bit rate and the actual
number of bits to encode the frames. It depends on the quantization parameter
(QP) and the number of frames. Note that this frame rate is different from the
frame encoding speed, which is a measure of the actual running time of the
program in terms of frames per second, and depends on the computational and
programming complexity.

Fig. 8. Luminance PSNR witharithmetic codingmode.

Fig. 9. Luminance PSNR withadvanced predictionmode.

Fig. 10. Luminance PSNR withPB-framesmode.

complexity of (and therefore bit spent to encode) the sequence.
The mean QP is 5.68–17.88 while the mean encoded frame rate
(in terms of the ratio of allocated bit rate and actual number
of bits to encode the frame) is 9.44–9.88 frames/s. It is evident
from this figure that, with a constant bit rate, the SM sequences
yield very good quality while the quality of the FM sequences
is still acceptable.

Table II shows the frame encoding speed in frames/s for our
H.263 video encoder. These results involve no explicit optimiza-
tion. Although we disabled explicit compiler optimization for

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 909

Fig. 11. Luminance PSNR with all optional modes.

Fig. 12. Luminance PSNR with no optional mode at 28.8 kbits/s.

the PC by using switch for the Microsoft Visual C com-
piler, the compiler uses some intrinsic optimizations. As a result,
the PC version of the encoder yields faster encoding speed com-
pared to the Ultra-1 workstation. It may be observed from this
table that the use of optional modes considerably slow down the
encoding speed. Table III shows the encoding speed with AO
performed on motion estimation, DCT and IDCT. The effect of
using AO is discussed in Section V-D. The multimedia instruc-
tion sets are not used in these cases.

Table IV shows the encoding speed with AO and compiler
optimization. Further fine tuning in optimization is done by re-
ducing some cycle-expensive operations, and including some
code optimization, especially LU and DTO. The effect is dis-
cussed in Section V-D.

Table V includes the H.263 encoding speed with all the op-
timizations. The encoder achieved a maximum frame-encoding
speed of 18.12 frames/s using the PC PII and 12.17 frames/s
using the Ultra-1 workstation. On the Ultra-1, the mean frame
encoding speed with no optional mode is 11.28 frames/s. Using
the PB-frames, SAC, UMV, and advanced prediction modes, the
average frame encoding speed is 11.27, 10.91, 8.98, and 7.15
frames/s, respectively. Using all the optional modes, the average
frame encoding speed goes down to 6.72 frames/s. On the PC
PII, the mean frame encoding speed is 16.05 frames/s without
optional modes. Using the SAC and the PB-frames modes, the

average frame encoding speed is 15.78 and 15.04 frames/s, re-
spectively. However, with use of the UMV mode, the advanced
prediction mode and all optional modes yielded average frame
encoding speeds of 14.26, 11.44, and 10.44 frames/s, respec-
tively.

Table VI shows the percentage loss in encoding speed using
various optional modes compared to no optional mode. The sig-
nificance of these results is discussed in the next section.

Table VII shows the average luminance PSNR without opti-
mization, which does not increase significantly with the use of
optional modes.

In Table VIII, perceptible changes in PSNR are not due to
optimizations. This fact is further highlighted by the subjective
judgment of visual quality. Under some test conditions, how-
ever, the use of optional modes may increase the PSNR by about
1 dB [5].

Table IX shows the average obtained bit rate for the no op-
timization case, with the quantization QP fixed at a value of
10. Values shown in parentheses represent bit rates for interpic-
ture only, while those without parentheses represent bit rates in-
cluding intra-coded pictures. Different test sequences, having a
variety of motion involved, require different bit rates (for the QP
fixed at 10), ranging from 18 to 113 kbits/s for various optional
modes. The bit rate could be fixed to a particular value (say, 64
or 28.8 kbits/s). However, in that case, sequences with complex
motion (FM sequences) would take more encoding time and the
quality would be poorer as well. This effect is shown in Fig. 12.

Table X shows the average bit rate for the optimized case with
the QP fixed at 10. For the SUN Ultra-1 implementation, only a
small increase in bit rate is observed compared to without opti-
mization. This is due to the incorporation of fast search instead
of FSBM. Even for the PC-based implementation, the increase
in bit rate is not significant, and the implementation is still ap-
plicable with currently available modems.

Table XI depicts a comparison of encoding speed using two
different PC platforms: the 233-MHz Pentium II (PC PII) and
the 600-MHz Pentium III (PC PIII). In this comparison, we only
consider our H.263 encoder without optional modes. With an
increase in clock speed (2.58 times), the PC PIII consistently
gives higher encoding speed (2.49–2.57 times). The bit rates
are variable, but the average bit rate (while QP is fixed at 10)
for both the PCs is almost the same.

1) Effect of Coding Options:From Table VI, we observed
that the use of optional modes obviously increases the com-
plexity of the encoder, hence increasing the overall program
running time. However, these optional modes may be useful for
higher bit rates. Since we deal with QCIF sizes of video frames
and more common bit rates pertinent to most of the H.263-based
applications, the use of the PB-frames mode may be a better
choice, which provides a balance between encoding speed and
bit rate.

For the Ultra-1 implementation, the use of the PB-frames
mode incurs very low expense (about 2%) in additional time re-
quirement for the SM type of video sequences. It is interesting
to note that there is an actual gain (1%–4%) in the encoding
speed using the PB-frames mode for the FM type of video se-
quences. The use of only the PB-frames mode keeps almost the
same quality with 13%–28% less bit rate. This finding affirms

910 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

TABLE II
ENCODING SPEED IN FRAMES/S (NO OPTIMIZATION)

TABLE III
ENCODING SPEED IN FRAMES/S (WITH ALGORITHMIC OPTIMIZATION ONLY)

TABLE IV
ENCODING SPEED IN FRAMES/S (ADDING COMPILER OPTIMIZATION)

the fact that in H.263, B-pictures are computationally much less
expensive than P-pictures; because the motion estimation can

be done in a much smaller area, fewer blocks are coded, and on
average, fewer coefficients are transmitted per block.

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 911

TABLE V
ENCODING SPEED IN FRAMES/S (WITH ALL OPTIMIZATIONS)

TABLE VI
PERCENTAGELOSS INENCODING SPEEDDUE TO VARIOUS OPTIONAL MODES

TABLE VII
AVERAGE LUMINANCE PSNRIN DECIBELS (WITHOUT OPTIMIZATION)

The use of the SAC mode is the next less expensive mode. In
our experiments, the additional cost appears to be about 1%–7%
compared to the no-optional mode. In this case, the bit rate

is reduced by 3%–6%. However, the (UMV) mode accounts
for much more encoding time, and the additional cost is about
22%–24% for the SM type of sequences and 15%–19% for the

912 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

TABLE VIII
AVERAGE LUMINANCE PSNRIN DECIBELS (WITH ALL OPTIMIZATIONS)

TABLE IX
AVERAGE BIT RATE IN KBITS/S (WITHOUT OPTIMIZATION)

FM type of sequences. Using the UMV, there is little gain in
quality with almost the same bit rate. This result suggests that,
if there is little or no motion at or near the boundary region (as
in the case of the SM sequences), the overhead due to UMV is
much higher compared to those with faster or complex motion
(the FM sequences).

The advanced prediction mode is the most expensive mode
that slows down the encoder by 33%–39%. Using this mode,
we obtained almost the same quality while the savings in bit
rate is less than 10%. The reason is that the overhead of com-
puting four 8 8 motion vectors instead of one 1616 motion
vector is obviously higher. With this mode, 88 motion vectors
are chosen for 65%–75% of the macroblocks. Overall, using all
the modes simultaneously, the encoder runs at about 36%–44%
slower speed compared to no optional mode.

In the case of the PC PII-based implementation, SAC mode
proves to be the most efficient among the optional modes, re-
quiring only about 0.5%–3.5% more encoding time than no op-
tional mode at almost the same bit rate. The PB-frames mode is
the next, which requires about 4.5%–7.5% more encoding time,
but saves about 3.5% of the bits. The use of the UMV mode
is 8%–13% slower, while the advanced prediction mode needs
25%–32% more encoding time. Together, the use of all optional
modes slows down the encoder by about 33%–38%.

D. Effect of Optimizations

Fig. 5 shows the percentage of encoding time for various
modules. From our experimental results as shown in Table III,
the use of AO alone gives about three-fold speedup in encoding

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 913

TABLE X
AVERAGE BIT RATE IN KBITS/S (WITH ALL OPTIMIZATIONS)

TABLE XI
COMPARISON OF THEH.263 ENCODER(WITH ALL OPTIMIZATIONS) ON PCS

speed, compared to the no-optimization case. From Table IV,
which involves the AO, compiler optimization, and reduction of
some cycle-expensive operations, the additional optimizations
provide a 6–7 times more improvement in encoding speed. Fur-
ther inclusion of VIS provides a speedup of about 20% on the
overall program running time. All in all, with all the optimiza-
tions, about 20–26 times improvement in speed is observed with
no optional mode, while about 15–22 times speedup is gained
with all optional modes. In summary, we make the following
observations.

1) Optimizations at algorithmic level are the most important
consideration for computation-intensive functional mod-
ules, particularly for full-search block matching, DCT,
IDCT, quantization, and inverse quantization.

2) Although some of the loop unrolling (LU) may be per-
formed by the compiler optimizer, LU is an effective op-
timization technique. It can be applied to loop-intensive

functional modules such as motion estimation and motion
compensated prediction.

3) DTO provides improved performance when complicated
type conversions must be handled. For instance, DCT in-
cludes such operation in order to take advantage of the
64-bit registers, and DTO is very useful in such cases.

4) Motion estimation, motion compensated prediction,
DCT, and IDCT are the functional modules that deal
with regular data structures, and are amenable to
VIS/MMX-based optimization.

E. A Videophone Application

We have built a videophone using our optimized H.263 video
encoder. We use QCIF resolution of video, captured via a video
camera that may use the USB port of the PC. The videophone
displays both the called party and the calling party on sepa-
rate windows, while the PC runs both the H.263 encoder and

914 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

Fig. 13. Scene from the videophone application.

decoder. In addition to video, we also use an audio codec (for
which an additional bandwidth of about 10 kbits/s is necessary,
but this issue is not further discussed in this paper). The video-
phone reports the frame rate and the bit rates in real-time. For a
typical videophone, the motion involved in the scene is usually
slow, allowing lower bit rate with good quality. An instance of
the videophone, as shown in Fig. 13, reveals that the bit rate of
the sending and receiving bit streams are 8 and 36 kbits/s, re-
spectively, with a display frame rate of 23 frames/s. Although
the measured encoding speed in this case is 44.8 frames/s, due
to a constraint in available bandwidth, capture frame rate, etc.,
an overall throughput of only 23 frames/s has been achieved.
The bit-rate control option is set to “unlimited” (i.e., variable)
with a fixed QP of 10. However, we can also keep the bit rate
at a constant level (e.g., at 64 kbits/s), while allowing the QP to
change. For a fixed bit rate, if fast motion is involved, the vi-
sual quality will be poorer. However, for slow motion, a bit-rate
ceiling of 28.8 kbits/s is usually sufficient to yield good to ex-
cellent quality.

VI. CONCLUSION

We have presented the implementation of an optimized soft-
ware-based real-time H.263 video encoder. In order to achieve
enhanced performance, various software optimizations and low-
level machine primitives such as VIS and MMX are exploited.
We have achieved a video-encoding speed which is sufficient
for most GSTN-based applications. In addition, we have pre-
sented a discussion about the optimal choice of the encoder. It

has been found that the use of PB-frames mode is a good choice
for encoding, which provides a balance between PSNR, bit rate,
and encoding speed. Our present work focuses on the incorpora-
tion of new and improved algorithms for various encoder mod-
ules, which can be easily used replacing the existing algorithms,
without altering the backbone of our implementation.

REFERENCES

[1] S. M. Akramullah, I. Ahmad, and M. L. Liou, “A software-based H.263
video encoder using a cluster of workstations,”Proc. SPIE, vol. 3166,
pp. 266–273, 1997.

[2] P. Baglietto, M. Maresca, M. Migliardi, and N. Zingirian, “Image pro-
cessing on high-performance RISC systems,”Proc. IEEE, vol. 84, no.
7, pp. 917–930, July 1996.

[3] V. Bhaskaran, K. Konstantinides, and B. R. Natarajan, “Multimedia
architectures: From desktop to portable appliances,”Proc. SPIE, vol.
3021, pp. 14–25, 1997.

[4] F. Chen, J. D. Villasenor, and D. S. Park, “A low-complexity rate-dis-
tortion model for motion estimation in H.263,” inProc. 3rd IEEE Int.
Conf. Image Processing, vol. 2, Sept. 1996, pp. 517–520.

[5] B. Girod, E. Steinbach, and N. Farber, “Performance of the H.263 video
compression standard,”J. VLSI Signal Proc. Syst. for Signal, Image,
Video Technol., vol. 17, no. 2–3, pp. 101–111, Nov. 1997.

[6] Z. L. He and M. L. Liou, “A high performance fast search algorithm for
block matching motion estimation,”IEEE Trans. Circuits Syst. Video
Technol., vol. 7, pp. 826–828, Oct. 1997.

[7] D. Y. Hsiau and J. L. Wu, “Real-time PC-based software implementation
of H.261 video codec,”IEEE Trans. Consumer Electron., vol. 43, pp.
1234–1244, Nov. 1997.

[8] Generic Coding of Moving Pictures and Associated Audio, ISO/IEC
Draft International Standard 13 818-2, Nov. 1993.

[9] Video codec for audiovisual services atp� 64 kbits/s, Recommendation
H.261, 1990.

[10] Video coding for low bit-rate communication, ITU-T Draft Recommen-
dation H.263, Dec. 1995.

AKRAMULLAH et al.: OPTIMIZATION OF H.263 VIDEO ENCODING USING A SINGLE PROCESSOR COMPUTER 915

[11] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner, “The Vi-
sual Instruction Set (VIS) in UltraSPARC,” inProc. COMPCON, Spring
1995, pp. 462–469.

[12] B. R. Lee, K. K. Park, and J. J. Hwang, “H.263-based SNR scalable
video codec,”IEEE Trans. Consumer Electron., vol. 43, pp. 614–622,
Aug. 1997.

[13] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vectors,”IEEE Trans. on Circuits Syst. Video Technol., vol. 3, pp.
148–157, Apr. 1993.

[14] Z. J. A. Mou, D. S. Rice, and W. Ding, “VIS-based native video
processing on UltraSPARC,” inProc. 3rd IEEE Int. Conf. Image
Processing, vol. 2, Sept. 1996, pp. 153–156.

[15] K. N. Ngan, D. Chai, and A. Millin, “Very low bit rate video coding
using H.263 coder,”IEEE Trans. Circuits Syst. Video Technol., vol. 6,
pp. 308–312, June 1996.

[16] H. S. Oh and H. K. Lee, “Adaptive rate control scheme for very low
bit rate video coding,”IEEE Trans. Consumer Electron., vol. 42, pp.
974–980, Nov. 1996.

[17] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimedia PCs,”
Commun. ACM, vol. 40, no. 1, pp. 25–38, Jan. 1997.

[18] K. R. Rao and P. Yip,Discrete Cosine Transform: Algorithms, Advan-
tages, Applications, Appendix A-2. New York: Academic, 1990.

[19] K. Rijkse, “H.263: Video coding for low-bit-rate communication,”IEEE
Commun. Mag., vol. 34, no. 12, pp. 42–45, Dec. 1996.

[20] H. Sava, M. Fleury, A. C. Downton, and A. F. Clark, “A case study in
pipeline processor farming: Parallelising the H.263 encoder,” inProc.
BCS PPSG, U.K. Parallel 1996. New York: Springer-Verlag, July
1996, pp. 196–205.

[21] E. Steinbach, N. Farber, and B. Girod, “Standard compatible extension
of H.263 for robust video transmission in mobile environments,”IEEE
Trans. Circuits Syst. Video Technol., vol. 7, pp. 872–881, Dec. 1997.

[22] Sun Microsystems,Visual Instruction Set (VIS) User’s Guide, Mar.
1997, Version 1.1.

[23] Telenor Research and Development,TMN (H.263) Coder, Version
2.0 Norway, 1996.

[24] M. Tremblay, D. Greenley, and K. Normoyle, “The design of the mi-
croarchitecture of UltraSPARC-I,”Proc. IEEE, vol. 83, pp. 1653–1663,
Dec. 1995.

[25] C. G. Zhouet al., “MPEG video decoding with the UltraSPARC visual
instruction set,” inProc. COMPCON, Spring 1995, pp. 470–475.

Shahriar M. Akramullah (S’96–M’99) was in
Dhaka, Bangladesh. He received the B.Sc. degree
in electrical engineering from Bangladesh Institute
of Technology, Chittagong, in 1991, ranking second
among a class of 1966. He received the M.Phil. and
Ph.D. degrees in electrical engineering from the
Hong Kong University of Science and Technology
(HKUST), Kowloon, Hong Kong, in 1995 and 1999,
respectively.

Currently, he is engaged in post-doctoral research
in the Electrical and Electronic Engineering Depart-

ment, HKUST. He has published several papers in distinguished international
journals and conference proceedings. His research interests include video and
multimedia signal processing, parallel processing, and distributed algorithms
for real-time video and image processing.

Dr. Akramullah was a recipient of the Commonwealth Scholarship from 1993
to 1995 and the HKUST PG studentship from 1996 to 1999. He received the Best
Paper Award and the Distinguished Paper Award in the IEEE (Hong Kong Sec-
tion) PG Student Paper Contest in 1995 and 1997, respectively. His biographical
profile is listed in the 2000Who’s Who in the World. He is a member of ACM.

Ishfaq Ahmad received the B.Sc. degree in electrical
engineering from the University of Engineering and
Technology, Lahore, Pakistan, in 1985, the M.S. de-
gree in computer engineering, and the Ph.D. degree
in computer science, both from Syracuse University,
Syracuse, NY, in 1987 and 1992, respectively.

He is an Associate Professor in the Department
of Computer Science, Hong Kong University of
Science and Technology (HKUST), Kowloon,
Hong Kong. He is also the Director of HKUST’s
Multimedia Technology Research Center, which

is supported through research grants from government funding agencies and
several Hong Kong and U.S. companies, and whose focus is on research
and applications of interactive multimedia systems and video compression,
in collaboration with some 50 industrial partners and research laboratories
around the world. His research interests span the areas of high-performance
computing, parallel and distributed systems, video compression, and networked
multimedia information technologies. He has published over 100 technical
papers in journals and conferences.

Dr. Ahmad serves on the Editorial Boards ofJournal of Parallel and
Distributed Computing, IEEE Concurrency (Cluster Computing), IEEE
TRANSACTIONS ONCIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY, and the
IEEE Distributed Systems Online.

Ming L. Liou (F’79) received the B.S. degree from
National Taiwan University, the M.S. degree from
Drexel University, Philadelphia, PA, and the Ph.D.
degree from Stanford University, Stanford, CA, in
1956, 1961, and 1964, respectively, all in electrical
engineering.

He joined AT&T Bell Labs in 1963 as a member
of Technical Staff and held various supervisory po-
sitions until 1984, when he joined Bellcore, and be-
came the Director of the Video Signal Processing Re-
search Group. He is currently with Hong Kong Uni-

versity of Science and Technology, Kowloon, Hong Kong, where he is Professor
Emeritus. He has published numerous technical papers.

Dr. Liou has been active in professional activities and has served in various
capacities, including as Editor of the IEEE TRANSACTIONS ONCIRCUITS AND

SYSTEMSfrom 1979 to 1981, President of the IEEE Circuits and Systems (CAS)
Society in 1988, and Founding Editor of the IEEE TRANSACTIONS ONCIRCUITS

AND SYSTEMS FORVIDEO TECHNOLOGY from 1991 to 1995. He received the
CAS Society Special Prize Paper Award in 1973 and the Darlington Prize Paper
Award in 1977. He is a Fellow of HKIE and a member of Sigma Xi, Eta Kappa
Nu, and Phi Tau Phi.

